Inverting Onto Functions and Polynomial Hierarchy
نویسندگان
چکیده
The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of that function on that input. We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, P 6= UP and TFNP functions are not computable in polynomial-time with an NP oracle.
منابع مشابه
Inverting onto functions might not be hard
The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? We give a relativized negative answer to this question by exhibiting an oracle...
متن کاملOn Inverting Onto Functions
We study the complexity of inverting many-one, honest, polynomial-time computable onto functions. Asserting that every polynomial-time computable, honest, onto function is invertible is equivalent to the following proposition that we call Q: For all NP machines M that accept , there exists a polynomial-time computable function gM such that for all x, gM(x) outputs an accepting computation of M ...
متن کاملFunction operators spanning the arithmetical and the polynomial hierarchy
A modified version of the classical μ-operator as well as the first value operator and the operator of inverting unary functions, applied in combination with the composition of functions and starting from the primitive recursive functions, generate all arithmetically representable functions. Moreover, the nesting levels of these operators are closely related to the stratification of the arithme...
متن کاملInverting Onto Functions
We look at the hypothesis that all honest onto polynomial-time computable functions have a polynomial-time computable inverse. We show this hypothesis equivalent to several other complexity conjectures including • In polynomial time, one can find accepting paths of nondeterministic polynomialtime Turing machines that accept Σ∗. • Every total multivalued nondeterministic function has a polynomia...
متن کاملOn Using Oracles That Compute Values
This paper focuses on complexity classes of partial functions that are computed in polynomial time with oracles in NPMV, the class of all multivalued partial functions that are computable nondeterministically in polynomial time. Concerning deterministic polynomial-time reducibilities, it is shown that 1. A multivalued partial function is polynomial-time computable with k adaptive queries to NPM...
متن کامل